

Planchet

	👋 Introduction
	How it works

	Constraints

	🏃‍♂️Quickstart
	On the server

	On the client

	🖥️ Installation
	Service Side

	Client Side

	🧰 Usage
	Jobs

	The data

	Readers & writers

	The endpoints

	The client

	👩‍🔬 Advanced
	The ledger / Redis

	Requests and batching

	Data formats

	Data directories

	Security

	Debugging

	👩🏽‍💻 Source
	API

	planchet.core

	planchet.client

	planchet.io

Documentation for the Code

	Module Index

👋 Introduction

Planchet (pronounced /plʌ̃ʃɛ/) is a data package manager suited for processing
large arrays of data items. It supports natively reading and writing into
CSV and JSONL data files and serving their content over a FastAPI service to
clients that process the data. It is a tool for scientists and hackers, not
production.

How it works

Planchet attempts to solve the problem of controlled processing of large
amounts of data in a simple and slightly naive way. It controls the reading
and writing of the data and leaves the processing to the user. The usage takes
roughly the following shape:

	You start by creating a job which specifies where to read, where to write, and what classes to use for that.

	Then, you ask for n data items, which your process works through locally.

	When your processing is done, you send the items back to the service to be written to disk.

[image: _images/Planchet.png]

All jobs and item statuses are logged by the system which assures that if
the process or even the service is interrupted, only in-flight data processing
will be lost.

Constraints

Single thread: Planchet is running in a single thread to avoid the mess of multiple
processes writing in the same file. Until this is fixed (may be never) you
should be careful with your batch sizes – keep them big enough to avoid
overwhelming the service with requests but not too big so that you avoid
request timeouts.

Independence: this tool was built in mind with independence of the data
points. What that means is that if you are processing a CSV, you don’t need
line 1 to process line 2. Technically, even in that case you could implement
something using Planchet, but the logic on the client side will not be pretty 👹.

🏃‍♂️Quickstart

This guide will take you through all the steps to set up a Planchet instance,
and run a simple NER [https://en.wikipedia.org/wiki/Named-entity_recognition]
processing over sample text using a spaCy worker script.

On the server

On the server we need to install Planchet and download some news headlines data
in an accessible directory. Then we copy over the data 1000 times to make it
large.

git clone https://github.com/savkov/planchet.git
cd planchet
mkdir data
wget https://raw.githubusercontent.com/explosion/prodigy-recipes/master/example-datasets/news_headlines.jsonl -O data/news_headlines.jsonl
python -c "news=open('data/news_headlines.jsonl').read();open('data/news_headlines.jsonl', 'w').write(''.join([news for _ in range(200)]))"
export PLANCHET_REDIS_PWD=my-super-secret-password-%$^@
make install
make install-redis
make run

Note that the service will run at 0.0.0.0:5005 on your host
machine. If you want to use a different host or port, use the make parameters:

make run HOST=my.host.com PORT=6000

Note: this guide will not work if you run a docker instance. If you do
want to do that, you will need to alter the script as indicated in the
comments below.

On the client

On the client side we need to install the Planchet client and
spaCy.

pip install planchet spacy tqdm
python -m spacy download en_core_web_sm
export PLANCHET_REDIS_PWD=<your-redis-password>

Then we write the following script in a file called spacy_ner.py making sure
you fill in the placeholders.

from planchet import PlanchetClient
import spacy
from tqdm import tqdm

nlp = spacy.load("en_core_web_sm")

PLANCHET_HOST = '0.0.0.0' # <--- CHANGE IF NEEDED
PLANCHET_PORT = 5005

url = f'http://{PLANCHET_HOST}:{PLANCHET_PORT}'
client = PlanchetClient(url)

job_name = 'spacy-ner-job'
metadata = { # NOTE: this assumes planchet has access to this path
 'input_file_path': './data/news_headlines.jsonl', # <--- change to /data/[...] if using docker
 'output_file_path': './data/entities.jsonl' # <--- change to /data/[...] if using docker
}

make sure you don't use the clean_start option here
client.start_job(job_name, metadata, 'JsonlReader', writer_name='JsonlWriter')

make sure the number of items is large enough to avoid blocking the server
n_items = 100
headlines = client.get(job_name, n_items)

while headlines:
 ents = []
 print('Processing headlines batch...')
 for id_, item in tqdm(headlines):
 item['ents'] = [ent.text for ent in nlp(item['text']).ents]
 ents.append((id_, item))
 client.send(job_name, ents)
 headlines = client.get(job_name, n_items)

Finally, we want to do some parallel processing with 8 processes. We can start
each process manually or we can use the parallel tool to start them all.

seq -w 0 8 | parallel python spacy_ner.py {}

🖥️ Installation

Planchet works in two components: a service and a client.
The service is the core that does all the work managing the data,
while the client is a light wrapper around the
requests [https://requests.readthedocs.io/en/master/] library
that makes accessing the service safer and more convenient.

Service Side

You can use this repo and start straight away like this:

git clone git@github.com:savkov/planchet.git
export PLANCHET_REDIS_PWD=my-super-secret-password-%$^@
make install
make run-redis
make run

If you want to run Planchet on a different port, you can use the uvicorn
command but note that you MUST use only one worker.

uvicorn app:app --reload --host 0.0.0.0 --port 5005 --workers 1

You can also run docker-compose from the git repo:

git clone git@github.com:savkov/planchet.git
export PLANCHET_REDIS_PWD=my-super-secret-password-%$^@
docker-compose up

Client Side

Install the client from PyPi using:

pip install planchet

🧰 Usage

Here we discuss all necessary elements of setting up a Planchet processing job.
If you are looking for a complete example, look at Quickstart.
If you are in a hurry, skip to the Client section.
If you want a quick overview of what is possible, you can take a look at the
PlanchetClient object or at the
Swagger API page typically under http://localhost:5005/docs.

Jobs

The job is essentially a big of metadata that controls the data management on
the server side. It is created though a separate request before starting to
do processing. To set up a regular job you will need a name, and to specify
the reading and writing methods through the parameters. There are, however,
some other types of jobs you may want to run, like an error logging job or
a reading job, or a repair job. Here’s a list of all parameters relevant for
setting up a job:

	name: the name of the job. If the job already exists, your initial request will fail.

	reader_name: the name of the reader class, e.g. CsvReader.

	writer_name: the name of the writer class, e.g. CsvWriter.

	metadata: the metadata passed on the reader and the writer classes (see more below).

	clean_start: restarts the job if it exists.

	mode: I/O mode for the job. Possible values: read, write, read-write.

	cont: if true, resets the iterator of the reader and allows to serve all incomplete items again.

	token: if used, the job will require an authentication token

Now that we know what the parameters of a job are, let’s consider the scenarios
we mentioned above.

Reading job: if you are interested in reading data from Planchet and not
storing the results, you can set the mode parameter to read which will
remove the requirement of specifying a writer.

Error logging job: if you just want to dump things through Planchet, like
your errors, you can set the mode parameter to write and disable the
reader.

Repair job: you will likely have a case where you interrupt a process or
you crash the system but you want to continue your processing. Typically,
Planchet will just give you the next items available and simply ignore the ones
that it served but never received. Making this smart has a lot of complications
so instead we handle it by running a repair job at the end using the cont
parameter. It essentially resets the iterator and wipes all non-complete items
from the log. Then it goes and reads them again while skipping all the complete
items.

The data

You can currently process anything you want that can be read and written to
a CSV or a JSONL file. The constraints to this are
basically independence of the data points and considerate sizes of the items
and the workers pool.

You could process data from/to other types of format if you build your own
reader and writer as discussed in
the advanced section.

In practical terms, the data is served in two formats based on whether it comes
from a CSV or JSONL file:

items = client.get(job_name, n_items)
for id_, item in items:
 print(item)
 # prints a list if reading from a CSV file
 # prints a dictionary or a list if reading from a JSONL file

Readers & writers

Planchet currently supports CSV through the CsvReader and CsvWriter
classes, and JSONL through the JsonlReader and JsonlWriter classes.
You need to specify one of each pair as the name of your reader and writer
in order to confuigure a job. You will also need to provide a shared metadata
file for the reader and the writer, which is essentially a configuration.

Currently, the following parameters are used:

	input_file_path: path to the data file for the job (both formats)

	output_file_path: path to the output file for the job (both formats)

	chunk_size: size of the chunk to be read by the CSV reading iterator; you probably don’t need to worry about this one.

	overwrite: if true, existing files are overwritten; if false existing files are appended.

Example

{
 "input_file_path": "/path/to/file",
 "output_file_path": "/path/to/output",
 "chunk_size": 100,
 "overwrite": False
}

The endpoints

scramble: starts a job. Requires name, reader_name,
writer_name, and metadata parameters. Can be further parametrised by
cont to make a repair job and mode to control whether it will be a
read-only, write-only or read and write job.

/serve: serves a batch of items from a job (job_name). The number of
items depends on the batch_size.

/receive: receives a batch of items from a job (job_name) sent through
the items parameter.

/mark_errors: marks items from job job_name spacified in ids as
errors.

/delete: deletes job_name and all items associated with it. Does not
clean the output file.

/clean: deletes all items assiciated with job_name.

/report: returns the status of job_name and numbers of completed items
and currently in flight.

/health_check: checks if the service is healthy.

The client

It is possible to use Planchet by directly querying the API endpoints, but it
is much more convenient to use
the PlanchetClient object.
This section will briefly show how to create and execute a regular job and how
a to change it to a repair job using the client.
For a full description of all methods, refer to the
source documentation.

Example

from planchet import PlanchetClient
from tqdm import tqdm

PLANCHET_HOST = '0.0.0.0' # <--- CHANGE IF NEEDED
PLANCHET_PORT = 5005 # <-- CHANGE IF NEEDED

url = f'http://{PLANCHET_HOST}:{PLANCHET_PORT}'
client = PlanchetClient(url)

job_name = 'regular-job'
metadata = {
 'input_file_path': '/data/data.jsonl',
 'output_file_path': '/data/output.jsonl'
}

make sure you don't use the clean_start option here
to make this a REPAIR JOB, set --> cont=True
client.start_job(job_name, metadata, 'JsonlReader', writer_name='JsonlWriter')

make sure the number of items is large enough to avoid blocking the server
n_items = 100
items = client.get(job_name, n_items)

while items:
 processed = []
 print('Processing item batch...')
 for id_, item in tqdm(items):
 item['hash'] = hash(item['text'])
 processed.append((id_, item))
 client.send(job_name, processed)
 items = client.get(job_name, n_items)

👩‍🔬 Advanced

Planchet generally makes things easier for you but sometimes it’s really
difficult to configure it correctly. This page will discuss some advanced
topics that will help you understand how to do that correctly and hopefully
anticipate some of the common failures.

The ledger / Redis

Planchet uses Redis as a ledger to log all jobs it manges as well as all the
items from these jobs.
The service uses a special instance of Redis that has persistence
pre-configured (see here [https://quay.io/repository/savkov/redis]).
Planchet can also be run with a regular Redis instance without that feature,
of course.

The data stored in Redis takes the following shapes:

Job

key -> "JOB:<job_name>"
value -> "{'metadata': '...','reader_name': '...','writer_name': '...','mode': '...'}"

Item

key -> "<job_name>: <item_id>"
value -> 'SERVED' or 'RECEIVED' or 'ERROR'

Token

key -> "TOKEN:<job_name>"
value -> '<token>'

Requests and batching

The service is running in a single process and all reading and writing is done
in a single thread. This presents some constraints on how the service can be
used.

Batches: the batches need to be set carefully as a batch size that is too
small would make the service block too easily if there is a large amount of
workers. A batch size that is too large could result in the service taking too
long to receive and write the bacth to disk, which would again block the
service. Ideally, one should set the batch size to a reasonable size that would
give the service enough processing time given the number of workers. This
sounds like a very dark art, but unless you are using a worker pool of many
tens or even hundreds of workers (or very large data items), you can just use
the default value of 100 and not worry about it.

Rquests: we alleviate the possible wrong “guessing” of the batch size by
simply retying the requests several times. This is built into
the client and generally you don’t need to worry
about it unless you feel you need to force a particular number of retries.

Data formats

Currently, Planchet supports reading and writing only in two data formats:
JSONL and CSV. However, new readers and writers can be added in
the io module
if they have the following signatures:

class MyReader:
 def __init__(self, meta_data: Dict):
 # The content of the metadata dictionary is not controlled.
 # You need to make sure that you pass the correct parameters to
 # your reader.

 def __call__(self, batch_size: int) -> List:
 # This method should return a list of items. The list should be
 # of length equal to the batch_size parameter.

class MyWriter:
 def __init__(self, meta_data: Dict):
 # The content of the metadata dictionary is not controlled.
 # You need to make sure that you pass the correct parameters to
 # your writer.

 def __call__(self, data: List):
 # This method takes a list of items and writes them to disk.

As you can see, the reading/writing is not really constrained in any way.
In fact, you can easily implement your own classes that read and write from/to
a database, for example (probably won’t work in docker unless you add the
appropriate dependencies though 🤭).

Data directories

Planchet can access anything the user it run under can. This means that if you
run it on the bare metal and point it to a file, it will find it. If you are
using docker, however, you will need to mount a directory into the container
so the path to that file will change. By default docker will mount .data/
in the Planchet directory to /data in the container. Make sure that you
get this right as the client will not complain in a very useful way.

Security

As stated a few times in this documentation: Planchet is not a production tool.
The main reason for that is that it easily exposes the host to external jobs.
The considerations are different in the different ways of running Planchet.

🐳 Docker: when you run the service using docker, you are essentially giving
complete access to anything in the container to Planchet. Anything can be read
and re-written using a job. The good thing is that you probably won’t have
anything useful in that container 🤷‍♂️.

🐻🤘 Bare metal: when you simply run Planchet using the make run route,
you will give Planchet (and its users) exactly the same access to the system
as the user you are doing it with. You may want to set up a special user
to protect your system (see
this [https://askubuntu.com/questions/1082424/how-to-create-www-data-user]
for inspiration), but you should also remember to include possible data sources
and output destinations into its permissions.

Debugging

As a fairly young project, Planchet is not great at telling you want’s wrong.
You will probably run into some trouble at some point, so instead of feeling
silly, go and read the logs. For docker you can use
docker logs -f <planchet-container> to read the output of the system as
requests are coming in. If you are running it on the bare metal, well it’s
probably where you’re running it 🤷‍♂️.

👩🏽‍💻 Source

API

planchet.core

planchet.client

planchet.io

Index

 _static/minus.png

_static/plus.png

_static/file.png

_images/Planchet.png
Redis

Keep arcord of all jobs and
servedprocessd fems

‘Send Planchet processed data

|

Ask Planchet for data packages

rwnmdmmdu(

b)) fesddarom

J

Push data to Planchet’s server

Run many instance of one-thread
processes that use PlanchetClient

I
g
3

3
£
g
o
g
g

e [T (HTRTTRTIATI

Lazy scientist

_static/Planchet.png
Redis

Keep arcord of all jobs and
servedprocessd fems

‘Send Planchet processed data

|

Ask Planchet for data packages

rwnmdmmdu(

b)) fesddarom

J

Push data to Planchet’s server

Run many instance of one-thread
processes that use PlanchetClient

I
g
3

3
£
g
o
g
g

e [T (HTRTTRTIATI

Lazy scientist

nav.xhtml

 Table of Contents

 		
 Planchet

 		
 👋 Introduction

 		
 How it works

 		
 Constraints

 		
 🏃‍♂️Quickstart

 		
 On the server

 		
 On the client

 		
 🖥️ Installation

 		
 Service Side

 		
 Client Side

 		
 🧰 Usage

 		
 Jobs

 		
 The data

 		
 Readers & writers

 		
 The endpoints

 		
 The client

 		
 👩‍🔬 Advanced

 		
 The ledger / Redis

 		
 Requests and batching

 		
 Data formats

 		
 Data directories

 		
 Security

 		
 Debugging

 		
 👩🏽‍💻 Source

 		
 API

 		
 planchet.core

 		
 planchet.client

 		
 planchet.io

